Retraction: Fast and long-range triplet exciton diffusion in metal-organic frameworks for photon upconversion at ultralow excitation power.

نویسندگان

  • Prasenjit Mahato
  • Angelo Monguzzi
  • Nobuhiro Yanai
  • Teppei Yamada
  • Nobuo Kimizuka
چکیده

Nature Materials 14, 924–930 (2015); published online 3 August 2015; retracted after print 24 November 2016. We wish to retract this Article due to concerns with some data related to upconversion in the solid-state samples presented in Fig. 4d,e, and to the reproducibility check of the triplet diffusion constant provided in the Supplementary Information. In this Article, we reported fast triplet energy migration and efficient photon upconversion at low excitation intensity in metal–organic frameworks (MOFs). We have since been able to observe the upconverted emission from MOFs both in benzene dispersions and in polymeric films; hence, the concept of photon upconversion in MOFs based on triplet energy migration remains valid. However, we are now unable to observe solid-state upconversion emission at the low excitation intensity reported in Fig. 4d,e, and to quantitatively reproduce the triplet diffusion constants in MOFs reported in Supplementary Figs 8–13 and Supplementary Tables 1–3. Since these are key parameters of this paper, all authors wish to retract this Article. We deeply regret these circumstances and sincerely apologize to the scientific community for the inconvenience this publication has caused to others.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retraction: Framing upconversion materials.

Nature Materials 14, 924–930 (2015); published online 3 August 2015; retracted after print 24 November 2016. We wish to retract this Article due to concerns with some data related to upconversion in the solid-state samples presented in Fig. 4d,e, and to the reproducibility check of the triplet diffusion constant provided in the Supplementary Information. In this Article, we reported fast triple...

متن کامل

Multiphoton harvesting metal–organic frameworks

Multiphoton upconversion is a process where two or more photons are absorbed simultaneously to excite an electron to an excited state and, subsequently, the relaxation of electron gives rise to the emission of a photon with frequency greater than those of the absorbed photons. Materials possessing such property attracted attention due to applications in biological imaging, photodynamic therapy,...

متن کامل

Direct measurement of the triplet exciton diffusion length in organic semiconductors.

We present a new method to measure the triplet exciton diffusion length in organic semiconductors. N,N'-di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPD) has been used as a model system. Triplet excitons are injected into a thin film of NPD by a phosphorescent thin film, which is optically excited and forms a sharp interface with the NPD layer. The penetration profile of the tri...

متن کامل

Highly Efficient Photon Upconversion in Self-Assembled Light-Harvesting Molecular Systems

To meet the world's demands on the development of sunlight-powered renewable energy production, triplet-triplet annihilation-based photon upconversion (TTA-UC) has raised great expectations. However, an ideal highly efficient, low-power, and in-air TTA-UC has not been achieved. Here, we report a novel self-assembly approach to achieve this, which enabled highly efficient TTA-UC even in the pres...

متن کامل

Metallonaphthalocyanines as triplet sensitizers for near-infrared photon upconversion beyond 850 nm.

In triplet-triplet annihilation-based photon upconversion (TTA-UC), the utilization of near-infrared (NIR) light with a wavelength longer than 850 nm remains an outstanding issue. We realized this by employing metallonaphthalocyanines as triplet sensitizers; upon excitation of NIR light (856 nm), upconverted emission was observed in the visible range with remarkable photostability.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature materials

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2016